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PERFORMANCE OF A T17RBoJET ENGINE WITB ADJUSTABIX FIRST-STAGE 

By  C a r l  L. Meyer , Ivan D. Smith, and Harry E. Bloomer 

The performance of a turbojet  engine  with a two-stage turbine, an 
ad justable  f irst-stage  turbine  stator,  and a variable-area  exhaust  nozzle 
was investigated  at  selected  constant  engine  speeds and two simulated 
f l i g h t  CWditiOnSj various  fixed  settings of the adjustable  turbine 
s ta tor  were used.  For the  particular component characterist ics of the 
engine  investigated, l i t t l e  tqrovement i n  thrust or  spec i f ic   fue l  con- 
sumption could  be realized at conditions from 75 percent of normal to 
m i l i t a r y  th rus t  by use of an adjustable  rather than aa optimum fixed 
first-stage  turbine stator. 

c INTRODUCTION 

As part  of an experimental evaluation of a ful l -scale   turbojet  . engine  with a two-stage turbine i n  the NACA Lewis al t f tude wind tunnel, 
data were obtained to determine the over-all and component performance 
of the engine when equipped  with  both an adjustable first-stage  turbfne 
stator and a variable-area exhaust nozzle. The performance of the tur- 
bine and a discussion of the design and mechanical r e l i a b i l i t y  of the 
adjustable  f irst-stage  turbine  stator are presented i n  reference 1. The 
performance of the compressor and over-all engine are presented  herein. 

For the  engine equipped with the adjustable  first-stage  turbine 
stator and variable-area.  exhaust  nozzle, it was possible to control the 
matching  between the compressor and the  turbine; thus, compressor pres- 
sure r a t i o  could  be  varied  independently of turbine-inlet  temperature 
and engine  speed within a range  limited by the flow-area; variation of 
the  adjustable  turbine stator, the maximum turbine-inlet  temperature, 
the compressor surge  pressure  ratio, o r  the area variation of the exhaust 
nozzle. Through use of various  fixed  positions of the  adjustable first- 
stage  turbine  stator, data were obtained to  enable  selection of an opti-  
mum f ixed-stator f l o w  area f o r  the  particular engine and t o  determine 
whether o r  not there m e  performance  advantages to be gained  by use of 
adjustable as compared with fixed  turbine stators in  the given engine. 

c 

1 The analgrsis of reference 2 indicates  possible improvements in   specif ic  
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f u e l  consumption at less than maximLrm thkust through use of adjustable, 
rather than  f ixed,  turbine  stators. in a turbo jet engine  equipped with a 
variable-area exhaust nozzle. d 

A t  a given  sirrmlated flight condition and at various  fixed  positions 
of the f i rs t -s tage turbine s ta tor ,  data were obtained over approximately 
the  available range of turbine-inlet  temperatures a t  each of v a l o u s  
constant  engine speeds by  varying  the  exhaust-nozzle area. A t  simulated 
conditions  corresponding t o  a flight Mach  nuniber  of 0.62 a t  an a l t i tude  
of 30,000 f e e t  and a flight Mach  nuniber of 0.46 at an a l t i tude  of 
15,000 feet ,  data were obtained  for a range of first-stage turbine-stator 
positions which correspond to   a . range of effective  stator flow areas from 
1.13 t o  1 . 2 5  square feet. 
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Compressor performance maps are presented  herein  for the simulated 
flight conditions  investigated.  Coqosite performance maps a r e  presented 
for  selected engine  speeds a t  the two simulated flight conditions t o  show 
engine performance i n  terms of net thrust ,   specific fuel consumption, 
turbine-inlet   to  engine-Wet temperature r a t io ,  and compressor pressure 
r a t i o   f o r  the family of first-stage  turbine-stator  positions  investigated. 
The r e su l t s  of the present  investigation me Umited, of course, by the 
component characterist ics of the engine. 

The adjustable  f irst-stage turbine stator used in  the  present  inves- 
t igat ion was not designed as a standard component of the engine  but was 
intended as a means of regulattng the engine operating  point for other 
component investigations such as that of ccqressor  surge  reported in 
references 3 and 4; theref  ore, high performance of the turbine w a s  not a I 

primary  consideration in  the  stator  design. In addition,  the  adjustable 
s ta tor  was the  f i rs t -s tage  s ta tor  of a two-stage turbine; the turbine 
rotors and second-stage s ta tor  were designed f o r  a fFxed-position f i r s t -  
stage  stator. 

'f 

APPARATUS 

Engine 

A prototype J40-WE-6 turbo:jet  engine was used f o r  the present irrves- 
t igation. Main  components of the  engine  include an U-stage axial-flow 
compressor, an annular combustor, a two-stage turbine, an exhaust  collec- 
t o r ,  and a continuously  variable  clam-shell-type exhaust nozzle. For the 
present  investigation, a mixer-vane assembly w a s  included st the compres- 
sor   out le t   to   a l leviate   turbine- inlet  temperature distribution problems; 
the  electronic  control was modified t o  permit  independent  control of 
engine  speed and exhaust-nozzle; area; and the  fixed-position first- 
stage  turbine  stator w a 6  replaced by an adjustable  stator. 

.r 
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. Approximate sea-level tbrust ratLngs of the J40-WE-6 turbojet  engine 
are as  follows : - 

Operating  condition Turbine-inlet gas Engine  speed, Thrus t ,  
l b  temperature, OF rpm 

N 
4 
(D 
N 

Take-off  and mil i tary 
6800 Normal 
7500 

5 m  75 percent normal 
6120 90 percent normal 

7260 
7260 
7260 
7050 

Ad justable   Firs t  -Stage  Turbine Stator 

The adjustable  f irst-stage  turbine  stator,  w h i c h  was supplied  by 
the engfne manufacturer, is illustrated schematically in figure 1. The 
s ta tor  blades were mounted on shafts and could  be  turned  simultaneously 
between the  inner and outer  shrouds  through  the  illustrated  actuating 
mechanism by an externally mounted worm-gem drive. Adjustment of the 
stator  settLng  varied the flow area of t he  s ta tor  and also the angle 
through which the  gases were turned in pssslng through the s ta tor .  A 
more detailed  description of the  turbine and the  adjustable s t a to r  i s  
given in  reference 1. Independent control of the  ad3ustable stator was  
used in  the  present  investigation to  select  various fixed s t a to r   s e t -  
tings f o r  which the range of effective flow area was from 1.13 t o  
1.25 square feet. The method of determining effective stator f low area 
i s  given i n  reference 1. 

P. 

c 

The engine was ins ta l led  on a wTng segment that was  supported i n  the 
20-foot-diameter tes t   sec t ion  of the a l t i tude  wind tunnel  by  the  tunnel 
balance frame. Dry refrigerated air was supplied  to the engine From the 
tunnel malce-up air system through a duct  connected to   the engine inlet. 
A i r  f low through the  duct was thro t t led  from approxhately  sea-level 
pressure  to a tots1  pressure at the engine i n l e t  corresponding to the 
desired flight Mach nuuiber and al t i tude,  while the tunnel  test-section 
s ta t ic   pressure was maintained a t  that corresponding t o  the desired 
altitude.  Thrust and drag measurements w i t h  the tunnel  balance  scales 
were made possible by a s l ip   j o in t  with a f r ic t ion less  seal located in  
the duct  upstream of the  engine. 

Conventional  instrumentation for   the measurement of temperatures and 
pressures w a s  ins ta l led  at va r ious  s ta t ions  in  the engine (fig. 2) .  Pres- 
smes in  the in l e t - a i r  duct ahead of  the engine (s ta t ion 1) and at the 
engine inlet (s ta t ion 2) were measured with water-filled manometers,  and 

- 

- those a t  the compressor out le t   (s ta t ion 4),  turbine M e t  (s ta t ion 5), and 
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turbine  outlet   (station 6 )  were measured w i t h  mercury-filled W o E t W S ;  
all pressures were photographically  recorded. Temperatures in the duct 
ahead of the  engine  and a t  the compressor out le t  were measured w i t h  iron- 
constantan  thermocouples, and those at the turbine-outlet were measured 
w i t h  chromel-alumel  thermocougles. All temperatures were automatically r 
recorded  by  self-balancing  potentiometers.  Turbine-inlet  temperatures 
were calculated from the  turbine-outlet  temperatures, with the assmnption 
that the enthalpy drop across the turbine was equal t o  the enthalpy rise 
across the compressor. Fuel flow w a s  measured by means of calibrated 
rotameters,  engine  speed  by means of a stroboscopic  tachometer i n  con- 
Junction  with a continuously  indicating  tachometer, and thrust by means 
of the  tunnel  balance  scales. 

z 
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PROCEDURE 

Engine speed,  exhaust-nozzle area, and first-stage turbine-stator 
position were independently  controlled  throughout  the  investigation. A t  
a given simulated flight condition and a t  vasious fixed  sett ings of the 
adjustable f i rs t -s tage  turbine.   s ta tor ,  data were obtained  over  approxi- 
mately the  available  range of turbine-inlet  temperatures at each of 
various  constant  engine  speeds  by varylng exhaust-nozzle  area. Maxim 
turbine-inlet  temperature was limited t o  14250 F or to the maximum 
obtainable  without  encountering compressor surge. MinFmum turbine-inlet 
temperature was limited by  the. maximum exhaust-nozzle  mea. .I 

Data are  reported  herein  for simulated conditions  corresponding t o  
a f l i gh t  Mach  number of 0.62 at an a l t i tude  of 30,000 f e e t  and a flight d 

Mach nunber' of 0.46 a t  an altitude of 15,000 feet .  Data were obtained 
w i t h  f ive  f ixed  posit ions of the  f irst-stage  turbine  stator a t  the 
higher  altitude  condition and with three at the lower altitude  condition; 
at both flight conditions,  the.range of' s tator  posit ions used  corre- 
sponded t o  a range of effect ive  s ta tor  f l a w  a r e a 6  from 1.13 to 1.25 square 
fee t .  A t  each turbine-stator  position, data were obtained a t  constant 
engine  speeds within  the range. of  4720 t o  7260 r p m .  

RESULTS AND DISCUSSION 

Compressor Performance 

Compressor performance maps for  sFmulated conditions  corresponding 
t o  a f l i g h t  Mach nulTiber of 0.62 at an altitude of 30,000 f e e t  and a 
f l i g h t  Mach  nuniber of 0.46 at an al t i tude of 15,000 feet  are  presented 
in   f i gu re  3. On coordinates of compressor pressure  ratio and corrected 
air flow  are  .+horn  lines of constant  corrected  eaine speed and compres- 
s o r  efficiency. The approximate compressor surge liinit i s  shown fo r  a 
f l i g h t  Mach number of 0.62 a t  an al t i tude of 30,OOO fee t ;  adequate data L 

were not  available t o  determine the compressor surge limit at the other 
simulated flight condition. 

.I 
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. At all corrected  engine  speeds, compressor efficiency decreased as 
compressor pressure r a t i o  m s  increased over the range investigated. In 

ciency,  the  efficiency  decreased  rapidly as the  corrected  engine  speed 
was raised. For engine  operation from 75 percent of no& thrust t o  
mi l i tmy thrust, the  corrected  engine speeds are 7630  and  7855 r p m  for 
the conditions of figure 3(a) a d  7290  and 7510 f o r  the conditions of 
figure  3(b); maximum coqressor  efficiency occurred at lower corrected 

- the region of corrected  a i r  flows above tha t  f o r  maximum compressor e f f i -  

4 
W 

N engine  speeds and compressor pressure ratios. In the  range of corrected 

e\, engine  speeds above about 7200 rpm, the  corrected air flow changed a 
comparatively smal l  m u n t  as corrected  engine  speed w a s  increased, which 
indicated choking at the compressor Wet .  

Engine Performance 

The aaibient s ta t ic   pressures  and temperatures  obtained  during  the 
investigation deviated somewhat from NACA standard  values;  therefore all 
engine performance pmameters  presented  Waphically have been  adfusted 
t o  NACA standard conditions at the respective  altitudes  by use of the 
factors  6, Etnd 8, (defined in amendix A ) .  All engine performance 
data obtained at the two simulated flight conditions  for  the  various 
fixed positions of the adjustable first-stage turbine s t a to r  me pre- 
sented  in  table I. 

Ad justable f irst-stage  turbine stator. - Composite performance plots 
fo r  engine speeds of 7260, 7050, 6800, 6400, and 5800 r p m  are  presented 
in f igure 4 f o r  a simulated flight Mach  nlfmber of 0.62 a t  an a l t i tude  of 
30,000 f ee t ,  and in figure 5 for a simulated f l i g h t  Mach number of 0.46 
at a n  a l t i tude  of 15,000 fee t .  The composite  performance plots ,  which 
were constructed  by  the method described in appendix B, are  presented on 
coordinates of net thrust  against compressor pressure  ra t io  and include 
curves f o r  the various  effective  flow axeas of the  f irst-stage  turbine 
stator  (obtainable  by varyFng exhaust-nozzle area), superbposed  l ines 
of constant  turbine-inlet to engine-inlet  temperature ratio, and contours 
of specific fuel consumption based on net thrust. Where possible, the 
approx-te compressor surge  pressure r a t i o  is indicated. A reliable 
measurement of exhaust-nozzle area waa not  available;  therefore, the  com- 
posi te   plots  could not be completed. to the extent of superinposing l i nes  
of constant  exhaust-nozzle  area. 

- 

By adjusting both the f i rs t -swge  turbine-s ta tor  and the exhaust- 
nozzle  areas a t  a given  engine  speed t o  control  the matching between the 
compressor  and turbine, it was possible t o  obtain  either constant 

a range of compressor pressure  ratios  (f igs.  4 and 5).  Similarly, it was 
possible t o  obtain a range of turbine-inlet to engine-inlet  temperature 

- turbine-inlet  to engine-inlet  temperature r a t i o  or  constant thrust over 
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r a t io s  and consequently a range of thrusts at a given compressor pres- 
sure  ratio.  Increasing  the  turbine-stator flow area  permitted a given 
turbine-inlet  to  engine-inlet  temperature  ratio  -to be obtained a t  lower 
compressor pressure  ratio and als.0 permitted  increased  turbine-inlet  to- 
engine-inlet  temperature  ratios t o  be obtained a t  a given compressor 
pressure  ratio. A t  a given  turbine-inlet temperature, the r a t i o  of 
compressor-outlet  pressures at two different  turbine-stator f low areas 
should  be  approximately  inversely  proportional t o  the r a t i o  of the 
turbine-stator f l o w  areas. Small experimental  errors i n   t h e  measurement 
of effective  turbine-stator  area;  turbine-inlet  temperature, and com- 
pressor  pressure  ratio caused some deviation from the  dorementioned 
relat ion in figures 4 and 5. 

Within the range of first-stage  turbine-stator areas investigated, 
var ia t ions  in  compressor pressure  ratio at constant  turbine-inlet  to 
engine-inlet  temperature  ratio arid engine  speed  through control of 
turbine-stator and exhaust-nozzle areas did not have an appreciable 
e f fec t  on thrust   ( f igs .  4 and 5). This was  par t icular ly  true a t   t h e  
higher  engine  speeds and turbine-inlet  to  engine-inlet  temperature  ratios 
where the thrust  change was generally  less  than 3 percent;  greater thrust 
changes occurred at the lower tewerature   ra t ios .  Exhaust-system losses 
aPfect  the  trends of thrust withjcompressor pressure  ratio at constant 
turbine-inlet  to  engine-inlet  temperature  ratio. As the compressor pres- 
sure r a t i o  was increased  at a given  turbine-inlet  to  engine-inlet tem- 
perature  ratio,  the compressor efficiency  decreased somewhat, whereas - 
the  turbine  efficiency  tended to; increase  slightly. A t  high  turblne- 
i n l e t  t o  engine-inlet temperature ra t ios ,  the exhaust system losses 
remained relatively  constant over the range of compressor pressure ratio8, 4 

and at these  conditions  the thrugt was not  appreciably  affected  by vari- 
ations in compressor pressure  ratio. A t  the low turbine- inlet   to  engine- 
i n l e t   t q e r a t u r e   r a t i o s ,  hawever, the exhaust-system losses tended t o  
decrease with increased compressor pressme  ra t io  and  caused larger vari- 
ations i n  thrust with coqressor.  pressure  ratio. 

In general,  specific  fuel consumption based on net thrust at a gfven 
turbine-inlet  to  engine-inlet  temperature  ratio  decreased as the colqpres- 
sor pressure  ratio w-as increasea  by  adjust ing  t~bine-s ta tor  and exhaust- 
nozzle  area6  (figs. 4 and 5); in many cases, however, there was an opti-  
mum compressor pressure  ratio for minimum specif ic   fuel  consumption at a 
given  turbine-inlet t o  engine-inlet  temperature  ratio  within  the  range 
of turbine-stator  areas  investigated. The specif ic   fuel  consumption, i n  
general,  decreased on the  order,of 1 t o  7 percent as the compressor pres- 
sure r a t i o  was increased at thelhigher  turbine-Met  to  engine-inlet  tem- 
perature  ratios.  The aforeIllent$oned trend of decreased  specific fuel 
consumption with  increased compressor pressure  ratio is  a t t r ibu ted   to  the 
conibined effects  of increased thermodynamic efficiency with increased 
compressor pressure  ratio, a trend of increasing  turbine  efficiency  with 
decreased  turbine-stator area, a trend of decreasing  exhaust-system .I 

* 



losses with decreased  turbine-stator  area  (especially  at  the lower t e m -  
perature   ra t ios) ,  and decreased compressor efficiency  with  increased 

- coqressor  pressure r a t i o .  

The composite  performance p lo t s  of f i gmes  4 and 5 do not show com- 
p le te  agreement with the  analysis of reference 2. This  analysis, which 
assumed constant  coqonent  efficiencies,  indicated  possible improvement 
in   spec i f ic  fuel consumption at less than maxhm thrus t  by using &n 

adjustable  turbine  stator and a variable-area e a m t  nozzle t o  maintain 
operation a t  a constant  conpressor  pressure  ratio as compared w i t h  opera- 
t ion  at a constant  turbine-stator area. I n  general, the trends of the 
specific fuel consumption contours of figure 4 indicate that a fixed 
first-stage  turbine-stator area may be selected  to  obtain near optFmum 
spec i f ic   fue l  consumption  over a range of engine  speeds; f o r  exaq le ,  a 
first-stage  turbine-stator  effective  area of 1.17 square feet w o u l d  be 
near optimum for the  conditfom of figure 4. The trends of the specific 
fuel consumption contours of f igure 5 indicate that the specific fuel 
consuqtion would be somew-hat lower for  operation at constant compressor 
pressure ratio as compared with operation at a constant  turblne-stator 
area; however, the gains would be small at thrust levels of interest .  

The variat ion of specific fuel consumption with ffrst-stage  turbine- 
stator effective mea at four  thrust   levels  for each of the two simulated 
flight conditions is shown tn figure 6. The four thrust levels  w e r e  

- chosen t o  approxbate military, normal, 90 percent of normal, and 75 per- 
cent of normal thrust .  A t  the four thrust levels  noted, the specif ic  
fuel consumption decreased at a decreasing rate a s  the turbine-stator w88 

occurred  within the range of turbine-stator axeas investigated at these 
thrust   levels.  The specific fuel consumption w a s  affected only s l igh t ly  
( less  than l p e r c e n t )  by changes in  turbine-stator area between 1.13 
and 1.17 s q w e  fee t .  U s e  of turbine-stator  areas less than 1.13 square 
f ee t  would result in l i t t l e  or no iqroveIllent in spec i f ic   fue l  consump- 
t ion,  and the  operable range at  the smaller areas  would be limlted by 
compressor surge. 

- closed8 to ta l   var ia t ions  of specific fuel consmption of 3 t o  1 2  percent 

Fixed f irst-stage turbine stator. - Performance data are not avail-  
able  for the engine  equipped with a standard first-stage turbine stator; 
however, the  effective f l o w  area of the standard first-stage stator was 
OR the order of 1.17 square feet. This area would r e su l t  i n  a specif ic  
fuel. consumption near the optimum values at the thrust levels  noted in 
figure 6. A s  shown fn figure 4, however, the limiting turbine-inlet to 
engine-illlet  temgerature  ratio at engine  speeds of 7260 and 7050 r p m  
occurred at or  near  the compressor surge limit f o r  an  effect ive  f i rs t -  
stage  turbine-atator area of 1.17 squerre feet. 

Prelim-lnFlry investigation of the engine equipped with the standard 
first-stage  turbine stator revealed a severe compressor surge  limitation 
a t  high corrected  engine  speeds  (refs. 3 and 4) .  To make the engine 
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operable  without compressor modifications and with R fixed f i r s t - s tage  
turbine  stator,  it would be necessary to  increase the flow area of the 
s ta tor  a sufficient amount t o  reduce  the  operating compressor pressure 
r a t i o  below the surge  .pressure  ratio at high corrected  engine  speeds. 
Such an increase would r e su l t  Fn gomewhat hi&& specific fuel consump- 
tion. For example, if a compressor pressure  ratio margin of 0.15 between N 

the 1Fmiting"temperature operating  point and the comgressor surge limit 
were chosen for  the  conditions  of:  figure-4(a),  the  effective  stator f low 
area  required would be approximately 1,20 sqikke feet ;   for  t h i s  area,  the 
specWic f u e l  consumption  would b& on the order of 1 t o  2 percent higher 
than  the minbmn obtained a t  the thrust levels noted in figure 6. 

.I 
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An adjustable  first-stage  turbine  stator could be used t o  avoid  the 
compressor surge l imitation of the particular engine at high  turbine- 
inlet temperatures and corrected ;engine speeds,  and also t o  permit  opera- 
t i on  at or near optimum compressqr pressure  ratios for miziimum specific 
f u e l  consumption at reduced thrusts. "he available inrprovement i n  spe- 
c i f i c   f u e l  consumption by use of .the adjustable  stator as congared with 
use of a  fixed  turbine-stator  effective area of 1.20 squa~e  feet ,   se lected 
t o  give an arbi t rary margin between the  operating and compressor surge 
pressure  ratios, would not warra& the ccanplications of the  adjustable 
s ta tor .  Aa increase  in the flowlarea of the fixed  f irst-stage  turbine 
s ta tor  may be considered a temporary method  of increasing  the margin 
between the operating and surge compressor pressure  ratios of the par- 
t i cu la r  engine;  modifications to . the  canpressor t o  improve the  surge 
l i m i t ,  such as  those  discussed in references 3 and 4, would permit  use 
of 8 fixed  first-stage  turbine-stator-flow  area which  would result i n  
near optimum specific  fuel cone@Stion at thrust   levels   cf , interest .  

Operational  Characteristics 

It is  possible that an adjustable  first-stage  turbine  stator  could 
be used t o  improve the  acceleration  characteristics of the engine.  Fig- 
ures 4 and 5 illustrate that the.compressor  pressure  ratio  maybe 
decreased at a gLven steady-state  turbine-inlet  temperature  by  increasing 
the  stator  flow  area;  thus the &gin between the  operating compressor 
pressure  ratio and the compress+ surge pressure  ratio could be increased 
for acceleration  purposes. The present program,  however, did not  include 
an investigation of the engine  apceleration  characteristics. 

. .  

The performance of a turbojet  engine w3th a two-stage turbine, an 
adjustable f i rs t -s tage  turbine  s ta tor ,  and a variable-area exhaust nozzle 
w a ~  investigated at selected  constant engine  speeds and two simulated 
flight conditions;  vasious f bed .  settings of the ad justable  stator were 
used. 

3 
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- 
For the par t icular  component characterist ics of the engine investi- 

gated, l i t t l e  improvement in thrust o r  specific fuel consumption could 
be realized a t  conditions from 75 percent of normal t o  military thrust 
by use of an adjust&le, rather than a fixed, first-stage turbine s ta tor .  
In general,  the thrust available a t  a given turbine-inlet t o  engine-inlet 
temperature r a t i o  was not  appreciably  affected by variations in coqres -  
sor  pressure  ratio  through  control of f irst-stage  turbine-stator and 
exhaust-nozzle areas .  The f l e x i b i l i t y  provided  by an adfustable first-stage 
turbine s ta tor  and a variable-area. exhaust nozzle may be used to   obtain 
minimum specific fuel consuption at a given  thrust; however, the avail- 
able hprovement in specific fuel consumption by use of an  adjustable as 
conpared with an optimum fixed turbine stator was m a l l  ( less  than 1 per- 
cent) at thrust levels  of interest. 

m 

Because of compressor surge  limFtations of the par t icular  engine 
investigated, it would be necessaryto use a fixed turbine-stator flow 
area larger  than that f o r  mlnhrum spectfic  fuel consumption if the engine 
were t o  be made opereble  wfthout compressor modifications  and with fixed 
f i r s t - s tage  turbine s ta tor .  The spectfic fuel consungtion  obtainable  by 
me of a given  setting  of the first-stage turbine stator,   selected t o  
give an arbi t rary compressor pressure r a t i o  -gin of 0.15 between the 
limiting temperature  operating  point and the compressor-surge 1-t f o r  
the  most critical  condition  investigated, would be on the order of 1 to 
2 percent higher than the minfmm obtained  by use of the adjustable 
s ta tor  a t  thrusts from 75 percent  of normal to military. This penalty 
in   spec i f ic   fue l  consumption would not w a r r a n t  the comglications of the 
adjustable  stator. 

- 

Lewis Flight Propulsion Laboratory 
National  Advisory Cammittee for Aeronautics 

Cleveland, Ohio, November 18, 1952 
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SYMBOLS 

The followfng synibols were used i n  this report: 

effective  mea of first-stage  turbine  stator,  sq f t  

net  thrust ,  l b  

Mach  number 

engine  speed, rpm 

t o t a l  pressure, lb/sq f t  : 

static  pressure,  lb/sq f t  

t o t a l  temperature, OR 

a i r  flow, lb/sec 

fuel Plow, lb/br 

r 

6 r a t i o  of t o t a l  pressure at engine inlet t o  absolute static  pressure 
of NACA standard atmosphere at sea  level 

I 

S, r a t i o  of ambient static  pressure po to  the  absolute  static  pres- 
mre of NaCA standard atmosphere at altitude 

8 r a t i o  of absolute t o t a l  temperature a t  engine inlet t o  absolute 
s t a t i c  temperature of NACA standard atmosphere at sea  level 

8, r a t i o  of absolute ambient, s t a t i c  temperature t o  absolute  static tem- 
perature of W A  standard atmosphere at a l t i tude 

Subscripts : 

0 free-stream  conditions 

1 cowl in l e t  

2 engine i n l e t  

4 cqre r s so r  out le t  

5 turbine inlet 
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METBOD OF CONSTRUCTLmG COMPOSITE PERFORMANCE PLOT8 

Compazable engine performance data adjusted to standard altitude 
conditions were not directly  available f o r  the  various  position8 of the 
adjustable first-stage turbine s t a to r  at  constant  engine  speeds,  includ- 
ing rated engine  speed,  because of anibient-air teqerature differences 
and because the  ambient-air  temperatures were  higher than standard at 
the  respective  alt i tudes (table I). It was  therefore necessaxy to use 
a method of cross-plotting a d  extrapolation of the data to obtain con- 
parable  engine performance f o r  the various positions of the first-stage 
turbine  stator. at constant  engine  speeds and standard a l t i t ude  condi- 
t ions. 

Typical  engine performance data f o r  a f ixed  f i rs t -s tage turbine- 
stator posi t ion  for  which the  effect ive  s ta tor  flow area was 1.13 square 
f e e t  &re presented in figure 7 f o r  a simulated flight Mach rider of 
0.62 a t  an altitude of 30,000 f ee t ,  and Fn f igure 8 f o r  a simulated 
flight Mach number of 0.46 at  an a l t i tude  of 15,000 f ee t .  These figures 
show compressor pressure  ra t io  against turbine-inlet to engine-inlet 
temperature r a t i o ,  and net thrust and fuel flow against compressor pres- 
sure r a t i o  f o r  four  engine  speeds; at each  engine  speed,  exhaust-nozzle - mea was varied t o  obtain  the  range of compressor pressure ratios. The 
constant  engine  speed  curves of these  figures were extrapolated t o  the 
l b i t i n g   t u r b i n e - i n l e t  to engine-inlet  temperature r a t i o  o r  to the corn- 

- pressor  surge  pressure  ratio. 

The data of f igures 7 and 8 and similar data for  the  other turbine- 
stator  posit ions were cross-plotted t o  obtain the performance at selected 
engine  speeds f o r  which composite  performance plots  were to be made. The 
cross  plots used the coordinates of compressor pressure  ratio  against  
engine speed  and were made for v&rious constant turbine-inlet t o  engine- 
i n l e t  temperature ra t ios ,   net  tbrusts, and fuel flows. Extrapolation of 
these cross  plo ts  was necessary t o  obtain performance at the  ra ted engine 
speed of 7260 rpm. Thus, the variation of turbine-inlet to engine-inlet 
temperature ra t io ,   net  thrust, and f u e l  flow w t t h  compressor pressure 
r a t i o  was determined f o r  each ffrst-stage  turbine-stator  position at the 
selected  engine  speeds. 
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Figure 1. - schematic sketch of adjustable turbine-stator  actuating mechanism. 



I I 



NACA RM E52L04 
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Corrected air flow, Wa-&/6, lb/sec 

(a) Altitude, 30,000 feet; flight Mach number, 0.62 .  

Figure 3. - Compressor performance maps. 
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(b) Altitude, 15,000 feet; flight Mach number, 0.46. 

Figure 3. - Concluaed.  Compressor  performance maps. 
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~onrpressor  pressure ratio, P ~ / P Z  

(a) Fsglne speed, 7260 rpm; corrected engine 
speed, 7855 rpm. 

Figure 4.  - C o m p o s i t e  performance plots.  Altitude, 30,000 fee t ;  
flight Mach number, 0.62. 
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I I 
First-stage turbine-stator  effective area, &, sq f ' t  

--Turbine-inlet to engine-inlet  temperature ra t io ,  Ts/l''ll 
Specific fuel consumption, Wf/F,, lb/!hr)(lb thrust) 

.. 

(b) Engine speed; 7050 rpm; corrected  engine 
speed, 7630 r p m .  

Figure 4. - Continued.  Composite  performance  plots. A l t i t u d e ,  
30,000 feet; flfght Mach number, 0.62. 
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(c) -ne speed, 6800 rpm,; corrected  engine 
speed, 7360 rpm. 

Figure 4 .  - Continued. Composite performance plots .  Altitude, 30,oOO feet ;  
flight Mach number, 0.62. - 
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(a) Engine speed, 8400 rpm; corrected  engine 
speect, 6925 rpm. 

Figure 4.  - Continued. Compoaite performance plots.  Altitude, 
30,000 f e e t i  flight Mach number, 0.62. 
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t -First-stage turbine-stator  effective  area, &, eq ft 

- ---Specific fue l  consumption, Wf/!Fn, lb/(hr)(lb thrust 
” Turbine-inlet t o  engine-inlet temperature ratFo, 5 

L 
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Compressor pressure ratio,  P ~ / P Z  

(e) Engine speed, 5800 rpm; corrected engine 
speed, 6275 rpm. 

Figure 4. - Concluded.  Composite  performance plot0 . Alti- 
tude, 30,000 feet;  flight Mach number, 0.62. 
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Compreesor pressure  ratio, P~/PZ 

(a) Engine speed, 7260 rpm; corrected engine 
speed, 7510 rpm. 

Figure 5. - Composite  performaace  plots.  Altitude, 15,000 feet; flight 
Mach number, 0.46 .  

NACA RM E52L04 
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Compressor preseure ratio, P ~ / P Z  

(b) Engine epeed, 7050 rpm; corrected engine 
speed, 7290 rpm. 

Figure 5 .  - Continued.  Composite  performance plots. Altitude, 15,000 feetj 
flight Mach rimer, 0.46. 
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. 

(e) Engine speed, 5800 rpm; corrected 
engine speed, 6000 r p m .  

Figure 5 .  - Concluded. Composite performance plote.  Altitude, 
W,ooO feet ;  flight Mach nmiber, 0.46. 
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First-etage  turbine-etator effective area, &, aq ft 

(a) Altitude, 30,000 feet; flight (b) Altitude,  15,Mx)  feet; fllght 
Mach number, 0.62. Mach Ilmnber, 0.46. 

Figure 6. - Variation of specFfic fuel consumption with first-stage  turbine-atator effective area w P at  constant  thruste. 

. . . . . . . . . 
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. 

(a) Variation of compressor pressure ratio with turbine-inlet to 
engine-inlet temperature ratio. 

Figure 7. - Effect of engine speed on engine performance parameters. Firat-stage turbine-stator 
effective area, 1.13 square feetj altitude, 30,000 feetj flight Mach number, 0.62 .  



Compressor pressura ratio, pg/P2 

(b) Variation of net  thrust with compres~or pressure ratio. 
Figure 7. - Continued. Effect of engine  speed on engine  performance parameters. First-stage 

turbine-stator effective area, 1.13 sguara feet# altitude, 30,000 feet; flight  Mach number, 
0.62. 
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(a) Variation of acutpressor pressure ratio nith turbine-inlet  to 
engine-inlet temperature ratio. 

Figure 8. - Effect of engine  speed on engine performance  parameters. First-stage 
turbine-etator effective area, 1.13 square feet;  altitude. 15.000 feet; f l ight  
Mach  number, 0.46. 
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(b) Variation of net  thrust with cmpreseor pressure ratio. 

F i g u r e  8. - Continued.  Effect of engine  speed on engine performanae parametere. Flrat-atage 

0.46. 
turbine-stator effective area, 1.11 aquare  feet;  altitude, 15,ooO reatj  flight Mach number, - 



. Figure 8. - Concluded. Effect of engine speed on engine performance parameters. First-atage 

0.46. 
turbine-stator effective L M ~ ,  1.13 square feet; altitude, 15,000 feat; flight Mach number, - 

WLcA-Lan,qlq - 1-1469 - 915 
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